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ABSTRACT 
 
This paper addresses the need for development of highly de-
pendable systems-of-systems for missile defense, which in-
volves C4 systems, which are traditionally non-real-time, and 
weapon systems, which typically operate under real-time con-
straints.  If we are to match the performance of weapon systems 
and avoid the negative impact of forcing synchronization of 
battle manager software with weapon systems for messaging, 
then we must develop the battle manager as real-time software.  
We present a new approach for developing battle-management 
software as a real-time set of system functionality that addresses 
warfighter usage.  To achieve the level of desired predictable 
battle-management behavior, we maintain that it is essential to 
develop a formal representation that captures the desired battle 
manager system behavior and test the formal representation 
against the expected battle-management properties.  Further-
more, we assert that it is critical to develop the battle manager 
as a real-time software-intensive system to ensure the schedula-
bility of battle-management tasks and provide for concurrent 
execution of such tasks where applicable. 
 
Keywords: Battle Management Kernel, Missile Defense, Sys-
tem-of-Systems 

1. INTRODUCTION 

During the past decade, the U.S. Department of Defense (DoD) 
shifted military tactics from the traditional war of attrition to a 
transformational concept of full-spectrum dominance: the abil-
ity of U.S. forces, operating unilaterally or in combination with 
multinational and interagency partners, to defeat any adversary 
and control any situation across the full range of military opera-
tions.  There is an urgent need for DoD to develop a global 
missile defense system to protect the U.S. and its allies against 
hostile missile attack. This paper describes a new approach for 
developing battle-management software as a real-time set of 
system functionality that addresses warfighter usage.  Section 2 
reviews the challenges in missile defense system development. 
Section 3 presents an overview of the proposed paradigm. Sec-
tion 4 highlights the formal approaches for developing the battle 
management kernel. Section 5 discusses the proposed approach 
and section 6 draws the conclusions. 

2. STATEMENT OF THE PROBLEM 

In [10], Parnas outlines six major characteristics of the battle-
management software in the Strategic Defense Initiative (SDI) 

(known today as the Ballistic Missile Defense) program; these 
issues are as relevant today as when the were first raised: 

1. The battle-management software must identify, track, and 
direct weapons towards targets whose characteristics may 
not be known with certainty until the moment of battle.  
The battle-management software must discriminate the 
threat objects from decoys and debris. 

2. The battle-management computing will be accomplished 
through a network of computers that are connected to 
sensors and weapons as well as other battle-management 
computers.  The behavior of the battle-management 
software cannot be predicted with confidence given the 
actual configuration of weapons, sensors, and battle 
managers at the moment of battle. 

3. Developers cannot test the battle-management software 
under realistic conditions prior to actual use of the soft-
ware. 

4. The duration of the defense engagement will be short:  it 
will not allow for either human intervention or debug-
ging the software to overcome software faults at runtime. 

5. The battle-management software will have absolute real-
time deadlines for the computation that will consist of 
periodic processes to include detecting and identifying 
potential threat missiles, assigning a weapon to engage 
the threat missile, and providing an assessment of the in-
terceptor-threat missile engagement.  Because of the un-
predictability of the computational requirements of each 
process, developers cannot predict the required resources 
for computation. 

6. The missile defense system will include a large variety of 
sensors, weapons, and battle-management components 
for which all will be large, complex software systems.  
The suite of weapons and sensors will increase in number 
as the development progresses.  The characteristics of 
these future weapons and sensors are not well defined 
and will likely remain fluid for many years.  Addition-
ally, all weapons and sensors will be subject to change 
independently of each other.  As such, the battle-man-
agement software must integrate numerous dynamic 
software systems to the extent that has never before been 
achieved. 

System-of-systems functional and performance expectations of 
the users continue to increase as the acquisition community 
continues to develop and field the products of C4 systems and 
weapon-systems integration.  The class of systems in which 
Command and Control (C2) and battle-management systems are 
contained is called Command, Control, Communications, and 



 

Computers (C4) systems.  Typically, C4 systems are non-real-
time systems.  Traditionally, weapon systems are real-time sys-
tems. If we are to match the performance of the weapon systems 
and avoid the negative impact of forcing synchronization of the 
battle manager with the weapon system for messaging, then we 
must develop the battle manager as real-time software. 

As a rule, battle management is still executed at the system level 
rather than the desired system-of-systems level.  We define a 
system-of-systems as an amalgamation of legacy systems and 
developing systems that provide an enhanced military capability 
greater than that of any of the individual systems within the 
system-of-systems. 

Another factor that contributes to the challenge involved in 
predicting battle-management behavior is the acquisition prac-
tices currently employed in DoD.  The increased pressure to 
rapidly move product into the operational battlespace tends to 
channel program managers into focusing on achieving function-
ality as quickly as possible.  As such, the development com-
munity responds with a hurried and oftentimes inadequate de-
sign phase and follows with an intense period of coding.  In the 
rush to rapidly develop a product, one can fall into the trap of 
exclusively seeking some level of achieved capability while 
ignoring the behavior of the software [2]. 

The current state-of-the-practice for developing systems-of-
systems tends to be ad hoc as discussed in [11].  Given that the 
interconnected battle-management solutions in systems-of-
systems are separately designed and developed on different 
operating platforms, predicting battle-management behavior of 
the systems-of-systems is not possible; this issue was also 
raised, in a broader context, in [9]. 

Because we cannot readily predict the system behavior of legacy 
battle-management systems, the requirements for such systems 
tend to be treated as part of a new development.  While the ba-
sic five functions do not change from system to system and from 
year to year, we choose to acquire a new battle-management 
system as a new development.  Almost exclusively changes are 
to the sensors used to collect information for the warfighters, 
the weapons used to engage threat targets, and the rules of en-
gagement (ROEs) established in both the planning and the C2 
functions.  Specific features within the battle-management soft-
ware will change over time (e.g., discrimination algorithms, 
correlation algorithms, feature-aided tracking); however, one 
can isolate those features in components that can be inter-
changed when developers are prepared to introduce new com-
ponents (e.g., new types of weapon systems) into the battle-
management software. 

3. A NEW PARADIGM 

We believe that it is possible to develop a globally distributed, 
real-time software-intensive battle-management system that 
exhibits highly predictable system-software behavior, in which 
the system receives sensor information from land, sea, air, and 
space, and commits land-, sea-, air-, and space-based weapons 
to fire at identified targets.  Furthermore, we believe that it is 
possible to employ linear temporal logic and model checking to 
a globally distributed, real-time battle-management system to 
aid in the realization of desired system behavior to include the 
weapons-commit logic.  We argue that the major benefits of our 
paradigm are that it will provide the following: 

• An engineering-based approach for developing battle-
management kernels (BMK) for missile-defense and 
other types of real-time systems used by combatant 
commands. 

• Acquisition organizations with a means for develop-
ing real-time software-intensive distributed systems 
that exhibit a high degree of predictability of system 
behavior. 

3.1 Battle Management Kernel 

The BMK is intended to serve as “glueware” between software 
applications unique to each battle-management domain, and the 
sensors, C2 systems, and weapon systems in that battle-man-
agement domain.1  That is, the BMK will execute the five kill-
chain functions by calling upon various components for com-
putation, as described in [3]. 

Rather than point-to-point interfaces, we will develop type in-
terfaces that define the behavior of each interface and the re-
quired specifications to realize each interface.  Further, we will 
develop and maintain the interfaces as separate configurable 
items to preserve the identity of the interface and to minimize 
the opportunity for multiple versions of the interface.  Addition-
ally, it is important that the interface advertise its operations, 
while not specifying implementations of its operations [5]. 

For ease of integration and maintainability, we will develop 
software components for the features that typically experience 
the majority of changes.  In theory, developers can realize a 
component-based framework with less effort and without un-
wieldy upgrade cycles as compared to fully integrated, mono-
lithic software solutions.  Additionally, a component-based 
framework allows for tailoring of the framework to address 
specific user needs [13].  For this paper, we identify software 
components that include enforcing rules of engagement, con-
ducting discrimination and correlation, performing feature-
aided tracking, and estimating launch, impact, and intercept 
points. 

A BMK is similar in purpose to an operating system (OS) ker-
nel in that both kernels manage resources shared by competing 
entities.  In the case of an OS kernel, the competing entities are 
computer processes vying for processor and memory resources.  
In the case of a BMK, the competing entities are all of the com-
ponents of the system-of-systems that comprise the battle-
management system, such as the C2 and weapon systems.  The 
components in the kernel are expected to be stable compared to 
the other components in the system-of-systems.  For instance, 
device drivers tend to be updated frequently and therefore in 
principle should not be included in the OS kernel.  If they are 
included (i.e., the case of a monolithic kernel), and even worse, 
tightly coupled to OS management functions, then it becomes 
challenging to make modifications to the kernel that do not 
affect other parts of the kernel.  We would like to apply this 
same reasoning to BMK in order to simplify the design and 
maintenance of the kernels. 

                                                           
1 We use the term “glueware” rather than “middleware” because 

we intend for the BMK to serve more that just as a software 
layer that provides both a programming abstraction and trans-
parency (of the underlying heterogeneous systems). 



 

We also draw a parallel between BMK and safety kernels.  The 
functions to be included in a safety kernel are those that must be 
performed to maintain a safe system state or bring a system back 
into a safe state after the occurrence of a safety-critical event.  
No other functions may be included in a safety kernel.  An 
automated train protection (ATP) system is an example of a 
safety kernel.  Such kernels are well documented, validated, and 
verified before being considered for certification and accredita-
tion.  We view battle-management kernels in a similar light:  
they must work as advertised because the ability of the entire 
system-of-systems to be able to conduct warfare in the BMD 
battlespace is dependent on the BMK. 

3.2 Capability-based Acquisition Process 

In the context of DoD capability-based acquisition, the govern-
ment specifies the capabilities for the system that are needed by 
the warfighter.  Government contractors specify and refine the 
capabilities into system requirements, architectures, designs, 
and other system artifacts.  In [2], we demonstrate how the Uni-
fied Modeling Language (UML) can be used to refine a system-
of-systems.  In this paper we extend our earlier investigation to 
include the explicit treatment of linear temporal logic for devel-
oping the BMK functional specifications and verifying the 
specifications using model checking. 
 
In this approach, one starts by developing a framework that 
contains the proposed BMK along with the battle-management 
software components that will experience the most change dur-
ing the acquisition life cycle of a battle-management system. 
We envision software engineers developing the BMK as a real-
time set of system functionality that addresses its use by war-
fighters, starting from a high-level statement of capabilities and 
refining these statements into successively lower levels of sys-
tem artifacts.  We define the BMK to be the software that con-
tains the basic functions of battle management that will remain 
stable over time.  Derived from the kill chain [3], these basic 
battle-management functions are called tasks, and will manage 
the use of the system’s computing resources to ensure that all 
time-critical, battle-management events are processed as effi-
ciently as possible. 

As the initial step to the BMK development, we are performing 
a domain analysis of the battle-management functions.  This 
involves deriving warfighter usage requirements from battle-
management use cases.  We are refining the use cases concur-
rently with the development of sequence diagrams—these are 
used to capture messaging requirements among the derived 
classes from the use cases.  We are using the aforementioned 
artifacts as the basis for creating state diagrams of the BMK, 
with the aim of identifying the desired battle-management be-
havior.  The final step of the domain analysis will be to identify 
and verify assumptions on battle-management operations, in 
support of developing BMK specifications. 

From the iterative review and refinement of the aforementioned 
artifacts, we will develop detailed specifications that focus on 
defining BMK behavior and achieving battle-management 
goals. 

4. FORMAL APPROACH TO BMK DESIGN 

Our approach includes the verification of the functional specifi-
cations with the use of model-checking tools to determine the 
degree of predictability of system behavior with respect to state 

transitions and tolerance to battlespace environmental variables.  
The verification will focus on ensuring that the BMK can both 
meet the specifications and exhibit the desired behavior.  We 
will design test oracles that contain the full range of battle-
management variables that are both within and outside the ex-
pected range of operational values for ballistic missile defense. 

4.1 Temporal Logic 

We will construct a set of specifications using temporal logic 
that will serve as a model of the BMK.  The goal is to achieve a 
greater degree of clarity and focus in the specification of the 
desired BMK behavior as compared to that obtained from the 
traditional method of simply listing the system requirements. 

We will develop a sufficient amount of information to automati-
cally produce test cases for the implementation.  Otherwise, we 
run the risk of developing so-called “cartoon models” that are 
only useful for drafting and refining potential solutions.  We 
will develop test-ready models of the BMK.  According to 
Binder [1], in order to be testable, a model should contain all 
the features of the system-under test (in the present context, the 
BMK), preserve sufficient detail that is critical for discovering 
faults, and faithfully represents the essential states, actions, and 
transitions in the state diagram.  If the BMK model is to be 
useful for this effort and in future acquisition efforts, it must 
exhibit the following properties outlined in [12]:  appropriate 
level of abstraction, high degree of understandability, high 
measure of accuracy, and high level of predictiveness. 

We must ensure that the BMK model faithfully represents the 
behavior of battle-management operations.  We must ensure 
that the BMK states are reached appropriately and the transition 
triggers are reflective of the projected BMD battlespace.  For 
example, the model must transition from the state in which 
tracking occurs to the state in which a weapon assignment oc-
curs each and every time the model is presented with the ap-
propriate transition events.  Just as important, the model must 
not transition for events other than what was designed for the 
BMK. 

We are using temporal logic to define assertions for the BMK 
specifications.  We anticipate that these assertions will yield 
specifications that are verifiably consistent and accurate, and in 
turn, verifiably predictable behavior of the BMK. 

It is our experience that the vast majority of engineers involved 
with acquisition of software-intensive systems are not familiar 
with software formalisms.  Additionally, we assert that few of 
the many system engineers in acquisition could follow temporal 
logic without some level of instruction.  As such, software engi-
neers may choose to minimize the use of typical temporal logic 
symbols and attempt to develop the specifications in as close to 
natural language as possible while still maintaining the degree 
of rigor that temporal logic lends to specification development.2 

This approach is necessary to gain buy-in from system engi-
neers and engineering managers.  Acquisition efforts require 

                                                           
2 Other alternatives to presenting system engineers and program 

managers with mathematical formulas include but are not lim-
ited to tabular and graphical representations, along with simu-
lation and animation (e.g., animate the transitions among 
states in a statechart as a simulation of a system progresses). 



 

significant commitments of human and financial capital.  Intro-
ducing new acquisition methods to replace that which is famil-
iar and comfortable is generally viewed as risky and foolish.  
Proposed changes must be readily evident to system engineers 
and engineering managers, or the proposed changes will not be 
adopted.  As a partial example of our approach, consider the 
assignment of a weapon to a tracked object: 

User Goal:  Assign a Weapon to a Tracked Object 
Narrative:  The BMK must assign a weapon to engage a threat 
object before it impacts or detonates over a pre-designated de-
fended area.  The BMK must determine whether the tracked 
object is a ballistic-missile threat.  The BMK must determine 
whether the predicted impact point is within the defended area 
as defined by military planners.  The BMK must determine 
which weapons are available.  The BMK must determine which 
weapon(s) can engage the tracked object.  The BMK must as-
sign the appropriate weapon to prosecute the engagement of the 
tracked object. 

The logic to assign a weapon to a tracked object is as follows: 
 
Weapon assigned to track object is true iff: 
 (Tracked object is a ballistic-missile threat) ∧ 
 (Predicted impact point is within defended area) ∧ 
 (Weapon is available) ∧ 
 (Weapon interceptor capability is adequate)  
 
We would outline the specification as follows: 
 
Variables: 
Boolean:  Weapon_Assigned 
// Weapon assigned to tracked object is true 
Boolean:  Ballistic_Threat 
// Tracked object is ballistic-missile threat 
Boolean:  IPP_Within_Defended_Area 
// This statement is true if the predicted impact point lies inside 
the physical dimensions of the defended area.   
Boolean:  Weapon_Available 
// True if one or weapons are capable of immediately launching 
an interceptor. 
Boolean:  Intercept_Point_Min_Within_Intercept_Range 
// True if the minimum intercept point lies within the interceptor 
range volume. 
Boolean:  Unknown Track 
// True if track object has yet to be identified as a ballistic-
missile threat 
Set:  Tracked_Object 
// Contains detected characteristics of a ballistic-missile threat 
Multiset:  Threat_Profile 
// Contains sets of characteristics for known ballistic-missile 
threats 
String:  Tracked_Object_Status 
// Identifies status of Tracked_Object.  Will be Active, Killed, 
Hit, or Dropped 
Integer:  Unknown_Track_Life 
// Time duration from detection to present time – expressed in 
seconds. 
Boolean:  IPP_Within_Defended_Area  
// True if ballistic-missile threat IPP lies within defended area 
Real: IPP_Latitude 
// Latitude of IPP 
Real:  IPP_Longitude 
// Longitude of IPP 

Real:  Defended_Area_Max_Latitude 
// Maximum latitude value of defended area 
Real:  Defended_Area_Min_Latitude 
// Minimum latitude value of defended area 
Real:  Defended_Area_Max_Longitude  
// Maximum longitude value of defended area 
Real:  Defended_Area_Min_Longitude 
// Minimum longitude value of defended area 
Boolean:  Weapon_Status_Operational 
// True if weapon is operationally available to fight 
Boolean:  Weapon_Launcher_Armed 
// True if weapon launcher is armed and ready to fire 
Set:  Min_Intercept_Point 
// Minimum intercept point at which an intercept at points 
closer to defended area would result in negative consequences 
to the defended area.  Expressed in longitude and latitude.  
Typed as a set. 
Multiset:  Interceptor_Range_Volume 
// All points within the range of the interceptor.  Expressed in 
longitude and latitude. 
 
Assertions: 
Always Weapon_Assigned ⇔ ((Ballistic_Threat) ∧ 
(IPP_Within_Defended_Area) ∧ (Weapon_Available) ∧ (Inter-
cept_Point_Min_Within_Intercept_Range)) 
 
Always Ballistic_Threat ⇔ (Unknown_Track) Until  
(Tracked_Object ∩ Threat_Profile) ∧  
(Tracked_Object_Status = Active) ∧  
(Unknown_Track_Life) < 60 
 
Always IPP_Within_Defended_Area ⇔  
 (IPP_Latitude <  
Defended_Area_Max_Latitude) ∧  
(IPP_Latitude > Defended_Area_Min_Latitude) ∧ 
(IPP_Longitude < Defended_Area_Max_Longitude) ∧ 
(IPP_Longitude > Defended_Area_Min_Longitude) 
 
Always Weapon_Available ⇔ 
  (Weapon_Health_Operational) ∧ 
  (Weapon_Launcher_Armed) 
 
Always Intercept_Point_Min_Within_Intercept_Range  
⇔ (Min_Intercept_Point ∩ Interceptor_Range_Volume) 

4.2 Model Checking 

Software engineers should verify the functional specifications 
via model checking.  We define model checking as the system-
atic approach for testing functional assertions and substantiating 
the desired system behavior in the model.  Model checking is 
not a proof of correctness; instead, model checking involves 
creating functional models of a system and analyzing the model 
against the formal representations of the desired behavior [8]. 

For the BMK, we verify the functional specifications using an 
automated model-checking tool that can accept either developed 
specifications or UML statecharts as discussed in [7], and exer-
cise the temporal-logic assertions over a number of time cycles.  
We identify inconsistencies and breaks in logic through the use 
of the model-checking tool.  From the results of the model 
checking, we intend to correct our specifications and the arti-
facts from the domain analysis as required. 



 

However, our use of model checking is constrained by the state-
explosion problem:  as the size of the state space exceeds the 
memory capacity of the automated tool to check every trace in 
the model [6].  Through abstraction of the BMK functions in 
our specifications, we employ the concept of symbolic model 
checking in which Boolean functions are employed to represent 
transition relations and sets of states, using, for instance, a com-
pact representation of the state space (e.g., binary decision dia-
grams [4]), to simplify the BMK states by removing sub-trees 
and redundant edges on the BMK’s Boolean decision tree.  In 
other words, we transform the complex logic decisions at the 
bottom of the tree into simple Boolean statements so that we 
can capture the essence of the system behavior in the upper 
portions of the decision tree.  By reducing the high number of 
lower-level logic statements that develop very specific solutions 
and have limited impact on the overall system behavior, we 
should be able to manage the state-explosion problem. 

As an example of the state-explosion problem in terms of the 
BMK, consider the following assertion: 

Always Intercept_Point_Min_Within_Intercept_Range 
 ⇔ (Min_Intercept_Point ∩ 
 Interceptor_Range_Volume) 

Note that the number of points in Interceptor_Range_Volume 
could be large and that we are seeking to ensure that one spe-
cific point (Min_Intercept_Point) is within the set of points that 
define Interceptor_Range_Volume.  Rather than use model 
checking to ensure that this condition is true, we could abstract 
the assertion to either a True or False for Inter-
cept_Point_Min_Within_Intercept_Range.  This will reduce the 
number of traces through the model to verify this assertion. 

4.3 Missile Defense System Architectural Framework 

We are developing a framework in which the BMK connects to 
software components used for calculations in battle manage-
ment as well as the interfaces to external components of systems 
such as sensors, C2, and weapons.  The objective of this frame-
work is to show a design of a battle manager as an integration of 
various components rather than a single software application.  
Here, as in our past research [2], we consider weapon systems 
to be comprised of components rather than a single entity. 

By treating the each software application and each software 
interface as components, we believe that acquisition organiza-
tions can develop battle managers with more efficiency, reduced 
development times, and higher quality than current state-of-the-
practice methods; a similar view is expressed in [5].  The high-
level architectural view for the BMK is depicted in Figure 1. 

4.4 Prototype Validation  

Software engineers should consider developing a prototype of 
the BMK framework and demonstrating its behavior, capabili-
ties, and limitations.  They should test this prototype to deter-
mine the degree of system-behavior predictability with respect 
to state transitions and tolerance to battlespace environmental 
variables. 

While the demonstration is not intended to be an exhaustive 
test, it will offer a degree of robustness to accompany the capa-
bilities of the BMK prototype; we use the term “robustness” 
here to mean the degree to which a system can tolerate both 
failures and faults.  In other words, a robust system handles 
unexpected states in a manner that minimizes performance deg-
radation, data corruption, and incorrect output. 

We propose the following partial list of metrics be used as part 
of the BMK demonstration: 
1. Maximum number of concurrent tracks 
2. Percentage of processed tracks (birth to death) to total 

received tracks 
3. Percentage of correlated tracks to total correlation op-

portunities 
4. Percentage of discriminated tracks to total discrimination 

opportunities  
5. Percentage of weapon/target assignments to total 

weapon/target pairing opportunities 
6. Percentage of received weapon assignments to total 

weapon assignment opportunities 
7. Percentage of launch authorizations to total weapon as-

signment opportunities 
8. Percentage of re-engaged tracks to total re-engagement 

opportunities 
9. Percentage of undesired state changes to total illegal and 

out-of-bounds inputs 
10. Percentage of system crashes and system lockups to total 

illegal and out-of-bound inputs 
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Figure 1. Missile Defense System Architectural Framework 



 

5. DISCUSSION 

In our approach, only the basic functions of battle management 
that will remain stable over time are to be placed in the kernel.  
The BMK will manage the use of system’s computing resources 
to ensure that all time-critical, battle-management events are 
processed expeditiously.  The development of the BMK begins 
with articulating the capabilities, followed by refining the capa-
bilities into system requirements and properties, and finally into 
test- and verification-ready models (i.e., representations of the 
system-of-systems that are amendable to automated testing and 
verification). To avoid the state-explosion problem, software 
engineers should carefully model the fundamental behavior of 
the BMK rather than a comprehensive specification of the 
BMK. 

Software engineers should consider developing the formal rep-
resentation of the BMK by using temporal logic to describe the 
functional specifications of the BMK. They should verify the 
functional specifications with the use of a model-checking tool 
to determine the degree of system-behavior predictability with 
respect to state transitions and tolerance to battlespace environ-
mental variables. By incorporating assertion error-handling 
schemes developed from the functional model and verified by 
the model-checking effort into the BMK, software engineers can 
develop embedded automatic test generation capabilities. 

Software engineers should develop the required BMK interfaces 
as type interfaces that define the behavior of each interface and 
the required specifications to realize each interface. Desired 
timing-related behaviors of the system-of-systems should be 
represented in the interface definition rather than depending 
solely on messaging requirements; these interfaces need to be 
constructed for all BMD elements.   

For ease of integration and maintainability, we should develop 
software components to encapsulate the features that typically 
experience the majority of changes. 

6. CONCLUSION 

It is our belief that software engineers can develop a BMK that 
addresses the five basic functions and fulfills basic warfighter 
usage requirements for a battle-management capability.  Acqui-
sition agencies within DoD can use the proposed BMK ap-
proach as a point of departure for developing systems-of-sys-
tems.  However we should assess the utility of the BMK ap-
proach on real systems, including the BMDS, in order to con-
firm whether the approach both (i) contributes to the system-of-
systems exhibiting high degrees of system-behavior predictabil-
ity with respect to timing requirements and (ii) results in battle-
management kernels that support plug-and-play of system com-
ponents without violating the BMK timing requirements. 
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